首頁 > 農業

EDA365:RF電路和數位電路如何在同塊PCB上和諧相處?

由 墨知 發表于 農業2021-06-30

簡介在這種情況下,星形佈線意味著電路的數字部分和RF 部分應有各自的電源線路,這些電源線應在靠近IC 處分別去耦

rf值如何計算

單片射頻器件大大方便了一定範圍內無線通訊領域的應用,採用合適的微控制器和天線並結合此收發器件即可構成完整的無線通訊鏈路。

EDA365:RF電路和數位電路如何在同塊PCB上和諧相處?

它們可以整合在一塊很小的電路板上,應用於無線數字音訊、數字影片資料傳輸系統,無線遙控和遙測系統,無線資料採集系統,無線網路以及無線安全防範系統等眾多領域。

1

數位電路與類比電路的潛在矛盾

如果類比電路(射頻) 和數位電路(微控制器) 單獨工作可能各自工作良好,但是一旦將兩者放在同一塊電路板上,使用同一個電源供電一起工作,整個系統很可能就會不穩定。這主要是因為數字訊號頻繁的在地和正電源(大小3 V) 之間擺動,而且週期特別短,常常是ns 級的。

由於較大的振幅和較小的切換時間,使得這些數字訊號包含大量的且獨立於切換頻率的高頻成分。而在模擬部分,從天線調諧迴路傳到無線裝置接收部分的訊號一般小於1μV。

因此數字訊號與射頻訊號之間的差別將達到10-6(120 dB) 。顯然,如果數字訊號與射頻訊號不能很好的分離,微弱的射頻訊號可能遭到破壞,這樣一來,無線裝置工作效能就會惡化,甚至完全不能工作。

2

RF電路和數位電路做在同塊PCB上的常見問題

不能充分的隔離敏感線路和噪聲訊號線是常常出現的問題。如上所述,數字訊號具有高的擺幅幷包含大量高頻諧波。如果PCB 板上的數字訊號佈線鄰近敏感的模擬訊號,高頻諧波可能會耦合過去。

RF 器件的最敏感節點通常為鎖相環( PLL) 的環路濾波電路,外接的壓控振盪器(VCO) 電感,晶振基準訊號和天線端子,電路的這些部分應該特別仔細處理。

(1) 供電電源噪聲

由於輸入/ 輸出訊號有幾V 的擺幅,數位電路對於電源噪聲(小於50 mV) 一般可以接受。而類比電路對於電源噪聲卻相當敏感,尤其是對毛刺電壓和其他高頻諧波。

因此,在包含RF(或其他模擬) 電路的PCB 板上的電源線佈線必須比在普通數字電路板上佈線更加仔細,應避免採用自動佈線。同時也應注意到,微控制器(或其他數位電路) 會在每個內部時鐘週期內短時間突然吸入大部分電流,這是由於現代微控制器都採用CMOS 工藝設計。

因此,假設一個微控制器以1 MHz 的內部時鐘頻率執行,它將以此頻率從電源提取(脈衝) 電流,如果不採取合適的電源去耦,必將引起電源線上的電壓毛刺。

如果這些電壓毛刺到達電路RF 部分的電源引腳,嚴重的可能導致工作失效,因此必須保證將模擬電源線與數位電路區域隔開。

(2) 不合理的地線

RF 電路板應該總是布有與電源負極相連的地線層,如果處理不當,可能產生一些奇怪的現象。

對於一個數字電路設計者來說這也許難於理解,因為即使沒有地線層,大多數數位電路功能也表現良好。而在RF 頻段,即使一根很短的線也會如電感一樣作用。

粗略計算,每mm 長度的電感量約為1 nH , 434 MHz 時10 mmPCB 線路的感抗約為27 Ω。如果不採用地線層,大多數地線將會較長,電路將無法保證設計特性。

(3) 天線對其他模擬部分的輻射

在包含射頻和其他部分的電路中,這一點經常被忽略。除了RF 部分,板上通常還有其他類比電路。例如,許多微控制器內建模數轉換器(ADC) 用於測量模擬輸入以及電池電壓或其他引數。

如果射頻傳送器的天線位於此PCB 附近(或就在此PCB 上) ,發出的高頻訊號可能會到達ADC 的模擬輸入端。不要忘記任何電路線路都可能如天線一樣發出或接收RF 訊號。

如果ADC 輸入端處理不合理,RF 訊號可能在ADC輸入的ESD二極體內自激,從而引起ADC 的偏差。

3

RF電路和數位電路做在同塊PCB上的解決方案

以下給出在大多數RF 應用中的一些通用設計和佈線策略。然而,遵循實際應用中RF 器件的佈線建議更為重要。

EDA365:RF電路和數位電路如何在同塊PCB上和諧相處?

(1) 一個可靠的地線層面

當設計有RF 元件的PCB 時,應該總是採用一個可靠的地線層。其目的是在電路中建立一個有效的0 V 電位點,使所有的器件容易去耦。供電電源的0 V 端子應直接連線在此地線層。由於地線層的低阻抗,已被去耦的兩個節點間將不會產生訊號耦合。

對於板上多個訊號幅值可能相差120 dB ,這一點非常重要。在表面貼裝的PCB 上,所有訊號佈線在元件安裝面的同一面,地線層則在其反面。理想的地線層應覆蓋整個PCB ( 除了天線PCB 下方) 。

如果採用兩層以上的PCB ,地線層應放置在鄰近訊號層的層上(如元件面的下一層) 。另一個好方法是將訊號佈線層的空餘部分也用地線平面填充,這些地線平面必須透過多個過孔與主地線層面連線。

需要注意的是:由於接地點的存在會引起旁邊的電感特性改變,因此選擇電感值和佈置電感是必須仔細考慮的。

(2) 縮短與地線層的連線距離

所有對地線層的連線必須儘量短,接地過孔應放置在(或非常接近) 元件的焊盤處。

決不要讓兩個地訊號共用一個接地過孔,這可能導致由於過孔連線阻抗在兩個焊盤之間產生串擾。

(3) RF 去耦

去耦電容應該放置在儘可能靠近引腳的位置,每個需要去耦的引腳處都應採用電容去耦。採用高品質的陶瓷電容,介電型別最好是“ NPO” , “ X7R” 在大多數應用中也能較好工作。理想的選擇電容值應使其串聯諧振等於訊號頻率。

例如434 MHz 時,SMD 貼裝的100 p F 電容將良好工作,此頻率時,電容的容抗約為4 Ω,過孔的感抗也在同樣範圍。串聯的電容和過孔對於訊號頻率形成一個陷波濾波器,使之能有效的去耦。

868 MHz 時,33 p F 電容是一個理想的選擇。除了RF 去耦的小值電容,一個大值電容也應放置在電源線路上去耦低頻,可選擇一個2。 2 μF陶瓷或10μF 的鉭電容。

(4) 電源的星形佈線

星形佈線是類比電路設計中眾所周知的技巧(如圖1所示) 。

星形佈線———電路板上各模組具有各自的來自公共供電電源點的電源線路。在這種情況下,星形佈線意味著電路的數字部分和RF 部分應有各自的電源線路,這些電源線應在靠近IC 處分別去耦。

這是一個隔開來自數字部分和來自RF 部分電源噪聲的有效方法。如果將有嚴重噪聲的模組置於同一電路板上,可以將電感(磁珠) 或小阻值電阻(10 Ω) 串聯在電源線和模組之間,並且必須採用至少10 μF 的鉭電容作這些模組的電源去耦。這樣的模組如RS 232 驅動器或開關電源穩壓器。

EDA365:RF電路和數位電路如何在同塊PCB上和諧相處?

圖1 電源的星形佈線

(5) 合理安排PCB 佈局

為減小來自噪聲模組及周邊模擬部分的干擾,各電路模組在板上的佈局是重要的。

應總是將敏感的模組( RF部分和天線) 遠離噪聲模組(微控制器和RS 232 驅動器)以避免干擾。

(6) 遮蔽RF 訊號對其他模擬部分的影響

如上所述,RF 訊號在傳送時會對其他敏感類比電路模組如ADC 造成干擾。大多數問題發生在較低的工作頻段(如27 MHz) 以及高的功率輸出水平。

用RF 去耦電容(100p F) 連線到地來去耦敏感點是一個好的設計習慣。

(7) 在板環形天線的特別考慮

天線可以整體做在PCB 上。對比傳統的鞭狀天線,不僅節省空間和生產成本,機構上也更穩固可靠。

慣例中,環形天線(loop antenna) 設計應用於相對較窄的頻寬,這有助於抑制不需要的強訊號以免干擾接收器。應注意到環形天線(正如所有其他天線) 可能收到由附近噪聲訊號線路容性耦合的噪聲。

它會干擾接收器,也可能影響傳送器的調製。因此在天線附近一定不要布數字訊號線路,並建議在天線周圍保持自由空間。接近天線的任何物體都將構成調諧網路的一部分,而導致天線調諧偏離預想的頻點,使收發輻射範圍(距離) 減小。

對於所有的各類天線必須注意這一事實,電路板的外殼(外圍包裝) 也可能影響天線調諧。同時應注意去除天線面積處的地線層面,否則天線不能有效工作。

(8) 電路板的連線

如果用電纜將RF 電路板連線到外部數位電路,應使用雙絞線纜。每一根訊號線必須和GND 線雙絞在一起(DIN/ GND , DOUT/ GND , CS/ GND , PWR _ UP/ GND) 。

切記將RF 電路板和數字應用電路板用雙絞線纜的GND線連線起來,線纜長度應儘量短。給RF 電路板供電的線路也必須與GND 雙絞(VDD/ GND) 。

4

結論

迅速發展的射頻積體電路為從事無線數字音訊、影片資料傳輸系統,無線遙控、遙測系統,無線資料採集系統,無線網路以及無線安全防範系統等設計的工程技術人員解決無線應用的瓶頸提供了最大的可能。

同時,射頻電路的設計又要求設計者具有一定的實踐經驗和工程設計能力。本文是從業者在實際開發中總結的經驗分享,希望可以幫助眾多射頻積體電路開發者縮短開發週期,避免走不必要的彎路,節省人力和財力。

文章整理自網路,如有侵權,請聯絡系我們!

Tags:RF天線PCB佈線電路