首頁 > 藝術

快速瞭解RF射頻晶片測試座!科普:時域與頻域

由 濾波器 發表于 藝術2021-12-14

簡介利用該工具可以判斷出,當以某一特定頻率的正弦波輸入訊號來驅動過程物件時,其對應的輸出訊號的振動幅度和相位

時域和復域是什麼

快速瞭解RF射頻晶片測試座!

一、 RF射頻測試座定義

RF射頻測試座是幾個部分構成,首先是測試座外殼+測試座常規探針+RF射頻同軸聯結器。

快速瞭解RF射頻晶片測試座!科普:時域與頻域

RF測試座 圖片來源於網路

RF射頻

測試

座中,大部分結構和普通的測試座類似,除了同軸聯結器的部分。

關於測試座的部分,前面也講過了設計思路。

現在主要說說RF聯結器。

RF聯結器即射頻同軸聯結器,主要起通訊射頻作用。經過全球通訊行業的共同努力,使RF聯結器形成了專業體系以及國際標準,同時也是聯結器的必不可少的組成部分。

二、RF射頻測試座的工作原理

RF射頻測試座的常規pin腳還是採用對應的pogo pin探針,但是由於射頻傳輸訊號需要特別的媒介,所以相應的聯結器部分也很特殊,我們比較常見的射頻同軸聯結器(RF COAXIAL CONNECTOR)就是其中之一,這個部件會被嵌入到測試座中,用於測試時候的射頻導通。

對應相應測試座中射頻聯結器的設計選擇,可以參考如下(不僅限於如下介面),同時在定製測試座的時候,也需要向供應商提出自己晶片的插損和回損要求(即S12/S21和S11),同時也需要提出自己的接觸阻抗要求:

BNC是卡口式,多用於低於4GHz的射頻連線,廣泛用於儀器儀表及計算機互聯。

TNC是螺紋連線,尺寸等方面類似BNC,工作頻率可達11GHz,螺紋式適合振動環境。

SMA是螺紋連線,應用最廣泛,阻抗有50和75歐姆兩種,50歐姆時配軟電纜使用頻率低於12。4Ghz,配半剛性電纜最高到26。5GHz。

SMB體積小於SMA,為插入自鎖結構,用於快速連線,常用於數字通訊,是L9的換代品,50歐姆可到4GHz,75歐姆到2GHz。

SMC為螺紋連線,其他類似SMB,有更寬的頻率範圍,常用於軍事或高振動環境。

N型聯結器為螺紋式,以空氣為絕緣材料,造價低,頻率可達11GHz,常用於測試儀器上,有50和75歐姆兩種。

MCX和MMCX聯結器體積小,用於密集型連線。

BMA用於頻率達18GHz的低功率微波系統的盲插連線。

快速瞭解RF射頻晶片測試座!科普:時域與頻域

RF測試圖片,圖片來源於網路

三、RF射頻測試座的應用

當前隨著5G以及WIFI6等高速通訊標準的升級,新的RF晶片廣泛應用於手機,平板等移動裝置,通訊基站等通訊平臺。RF射頻測試座的需求越來越多,也越來越高,當前主要的RF晶片會用到老化測試,功能測試,以及極端環境下的特種測試,所以也對RF射頻測試座提出了更為高的測試需求。

四、RF射頻測試座的製作方法:

產品設計需要依靠資料,包括晶片的尺寸(長寬厚度),晶片間距,晶片的形狀,晶片測試中晶片需要執行的頻率,以及對應的插損,回損等資料。有些RF晶片功率較大,有可能需要提供過流需求,眾所周知,測試座pogo pin過流能力小於1A,所以說晶片的電源引腳過流能力也需要考慮進去,要不然會影響晶片的火力全開的測試資料。

即 Socket + RF同軸聯結器(還需要考慮到隔離)

五、RF射頻測試座的保養:

射頻測試座的話,需要定期保養,最好是每使用5000次用顯微鏡檢查下接觸探針或者RF射頻聯結器的情況,檢視針頂部是否有汙物以及針的磨損情況,保證測試座始終保持良好的測試狀態。如果是有汙物,建議使用超聲波清洗裝置,放入高純度酒精進行超聲波清潔,然後用氣槍做最後的清潔,保證測試座在乾燥的狀態,保證產品的使用壽命以及測試效能。如果有輕微磨損,不影響測試(即測試資料沒有很大的誤差),可以在清潔後繼續使用。如果說很嚴重的損傷,就需要更換探針以及RF聯結器,才能繼續使用了。

科普:時域與頻域

時域

是描述數學函式或物理訊號對時間的關係。例如一個訊號的時域波形可以表達訊號隨著時間的變化。 若考慮離散時間,時域中的函式或訊號,在各個離散時間點的數值均為已知。若考慮連續時間,則函式或訊號在任意時間的數值均為已知。 在研究時域的訊號時,常會用示波器將訊號轉換為其時域的波形。

頻域

frequency domain 是描述訊號在頻率方面特性時用到的一種座標系。對任何一個事物的描述都需要從多個方面進行,每一方面的描述僅為我們認識這個事物提供部分的資訊。例如,眼前有一輛汽車,我可以這樣描述它方面1:顏色,長度,高度。方面2:排量,品牌,價格。而對於一個訊號來說,它也有很多方面的特性。如訊號強度隨時間的變化規律(時域特性),訊號是由哪些單一頻率的訊號合成的(頻域特性)

時域time domain

在分析研究問題時,以時間作基本變數的範圍。

時域

是描述數學函式或物理訊號對時間的關係。例如一個訊號的時域波形可以表達訊號隨著時間的變化。

若考慮離散時間,時域中的函式或訊號,在各個離散時間點的數值均為已知。若考慮連續時間,則函式或訊號在任意時間的數值均為已知。

在研究時域的訊號時,常會用示波器將訊號轉換為其時域的波形。

時域

是真實世界,是惟一實際存在的域。因為我們的經歷都是在時域中發展和驗證的,已經習慣於事件按時間的先後順序地發生。而評估數字產品的效能時,通常在時域中進行分析,因為產品的效能最終就是在時域中測量的。如下圖2。1所示的時鐘波形。

快速瞭解RF射頻晶片測試座!科普:時域與頻域

時鐘波形

圖2。1 典型的時鐘波形

由上圖可知,時鐘波形的兩個重要引數是時鐘週期和上升時間。圖中標明瞭1GHz時鐘訊號的時鐘週期和10-90上升時間。下降時間一般要比上升時間短一些,有時會出現更多的噪聲。

時鐘週期就是時鐘迴圈重複一次的時間間隔,通常用ns度量。時鐘頻率Fclock,即1秒鐘內時鐘迴圈的次數,是時鐘週期Tclock的倒數。

Fclock=1/Tclock

上升時間與訊號從低電平跳變到高電平所經歷的時間有關,通常有兩種定義。一種是10-90上升時間,指訊號從終值的10%跳變到90%所經歷的時間。這通常是一種預設的表達方式,可以從波形的時域圖上直接讀出。第二種定義方式是20-80上升時間,這是指從終值的20%跳變到80%所經歷的時間。

時域波形的下降時間也有一個相應的值。根據邏輯系列可知,下降時間通常要比上升時間短一些,這是由典型CMOS輸出驅動器的設計造成的。在典型的輸出驅動器中,p管和n管在電源軌道Vcc和Vss間是串聯的,輸出連在這個兩個管子的中間。在任一時間,只有一個電晶體導通,至於是哪一個管子導通取決於輸出的高或低狀態。

頻域frequency domain在分析問題時,以頻率作為基本變數。

頻域frequencydomain 是描述訊號在頻率方面特性時用到的一種座標系。對任何一個事物的描述都需要從多個方面進行,每一方面的描述僅為我們認識這個事物提供部分的資訊。例如,眼前有一輛汽車,我可以這樣描述它方面1:顏色,長度,高度。方面2:排量,品牌,價格。而對於一個訊號來說,它也有很多方面的特性。如訊號強度隨時間的變化規律(時域特性),訊號是由哪些單一頻率的訊號合成的(頻域特性)

快速瞭解RF射頻晶片測試座!科普:時域與頻域

頻域分析

頻域(頻率域)——自變數是頻率,即橫軸是頻率,縱軸是該頻率訊號的幅度,也就是通常說的頻譜圖。頻譜圖描述了訊號的頻率結構及頻率與該頻率訊號幅度的關係。

對訊號進行時域分析時,有時一些訊號的時域引數相同,但並不能說明訊號就完全相同。因為訊號不僅隨時間變化,還與頻率、相位等資訊有關,這就需要進一步分析訊號的頻率結構,並在頻率域中對訊號進行描述。動態訊號從時間域變換到頻率域主要透過傅立葉級數和傅立葉變換實現。週期訊號靠傅立葉級數,非週期訊號靠傅立葉變換。

舉例

一個頻域分析的簡例可以透過圖1:一個簡單線性過程中小孩的玩具來加以說明。該線性系統包含一個用手柄安裝的彈簧來懸掛的重物。小孩透過上下移動手柄來控制重物的位置。

任何玩過這種遊戲的人都知道,如果或多或少以一種正弦波的方式來移動手柄,那麼,重物也會以相同的頻率開始振盪,儘管此時重物的振盪與手柄的移動並不同步。只有在彈簧無法充分伸長的情況下,重物與彈簧會同步運動且以相對較低的頻率動作。

隨著頻率愈來愈高,重物振盪的相位可能更加超前於手柄的相位,也可能更加滯後。在過程物件的固有頻率點上,重物振盪的高度將達到最高。過程物件的固有頻率是由重物的質量及彈簧的強度係數來決定的。

當輸入頻率越來越大於過程物件的固有頻率時,重物振盪的幅度將趨於減少,相位將更加滯後(換言之,重物振盪的幅度將越來越少,而其相位滯後將越來越大)。在極高頻的情況下,重物僅僅輕微移動,而與手柄的運動方向恰恰相反。

Bode圖

所有的線性過程物件都表現出類似的特性。這些過程物件均將正弦波的輸入轉換為同頻率的正弦波的輸出,不同的是,輸出與輸入的振幅和相位有所改變。振幅和相位的變化量的大小取決於過程物件的相位滯後與增益大小。增益可以定義為“經由過程物件放大後,輸出正弦波振幅與輸入正弦波振幅之間的比例係數”,而相位滯後可以定義為“輸出正弦波與輸入正弦波相比較,輸出訊號滯後的度數”。

與穩態增益K值不同的是,“過程物件的增益和相位滯後”將依據於輸入正弦波訊號的頻率而改變。在上例中,彈簧-重物物件不會大幅度的改變低頻正弦波輸入訊號的振幅。這就是說,該物件僅有一個低頻增益係數。當訊號頻率靠近過程物件的固有頻率時,由於其輸出訊號的振幅要大於輸入訊號的振幅,因此,其增益係數要大於上述低頻下的係數。而當上例中的玩具被快速搖動時,由於重物幾乎無法起振,因此該過程物件的高頻增益可以認為是零。

過程物件的相位滯後是一個例外的因素。由於當手柄移動得非常慢時,重物與手柄同步振盪,所以,在以上的例子中,相位滯後從接近於零的低頻段輸入訊號就開始了。在高頻輸入訊號時,相位滯後為“-180度”,也就是重物與手柄以相反的方向運動(因此,我們常常用‘滯後180度’來描述這類兩者反向運動的狀況)。

Bode圖譜表現出彈簧-重物物件在0。01-100弧度/秒的頻率範圍內,系統增益與相位滯後的完整頻譜圖。這是Bode圖譜的一個例子,該圖譜是由貝爾實驗室的Hendrick Bode於1940s年代發明的一種圖形化的分析工具。利用該工具可以判斷出,當以某一特定頻率的正弦波輸入訊號來驅動過程物件時,其對應的輸出訊號的振動幅度和相位。欲獲取輸出訊號的振幅,僅僅需要將輸入訊號的振幅乘以“Bode圖中該頻率對應的增益係數”。欲獲取輸出訊號的相位,僅僅需要將輸入訊號的相位加上“Bode圖中該頻率對應的相位滯後值”。

傅立葉定理

在過程物件的Bode圖中表現出來的增益係數和相位滯後值,反映了系統的非常確定的特徵,對於一個有豐富經驗的控制工程師而言,該圖譜將其需要知道的、有關過程物件的一切特性都準確無誤的告訴了他。由此,控制工程師運用此工具,不僅可以預測“系統未來對於正弦波的控制作用所產生的系統響應”,而且能夠知道“系統對任何控制作用所產生的系統響應”。

傅立葉定理使得以上的分析成為可能,該定理表明任何連續測量的時序或訊號,都可以表示為不同頻率的正弦波訊號的無限疊加。數學家傅立葉在1822年證明了這個著名的定理,並創造了為大家熟知的、被稱之為傅立葉變換的演算法,該演算法利用直接測量到的原始訊號,以累加方式來計算不同正弦波訊號的頻率、振幅和相位。

從理論上說,傅立葉變換和Bode圖可以結合在一起使用,用以預測當線性過程物件受到控制作用的時序影響時產生的反應。詳見以下:

1)利用傅立葉變換這一數學方法,把提供給過程物件的控制作用,從理論上分解為不同的正弦波的訊號組成或者頻譜。

2)利用Bode圖可以判斷出,每種正弦波訊號在經由過程物件時發生了那些變化。換言之,在該圖上可以找到正弦波在每種頻率下的振幅和相位的改變。

3)反之,利用反傅立葉變換這一方法,又可以將每個單獨改變的正弦波訊號轉換成一個訊號。

既然反傅立葉變換從本質上說,也是一種累加處理,那麼過程物件的線性特徵將會確保-“在第一步中計算得到的各種理論正弦波”所產生單獨作用的集合,應該等效於“各不同正弦波的累加集合”共同產生的作用。因此,在第三步計算得到的總訊號,將可以代表“當所提供的控制作用輸入到過程物件時,過程物件的實際值”。

請注意,在以上這些步驟中,沒有哪個點不是由畫在圖上的控制器產生的單獨正弦波構成。所有這些頻域方面的分析技術都是概念性的。這是一種方便的數學方法,運用傅立葉變換(或者緊密相關的拉普拉斯變換),將時域訊號轉換為頻域訊號,然後再用Bode圖或其他一些頻域分析工具來解決手頭的一些問題,最後再用反傅立葉變換將頻域訊號轉換為時域訊號。

絕大多數可用此方法解決的控制設計問題,也可以在時域內透過直接的操控來解決,但是對於計算而言,利用頻域的方法通常更簡單一些。在上例中,就是用乘法和減法來計算過程實際值的頻譜,而該過程實際值是透過對給定的控制作用進行傅立葉變換,爾後又對照Bode圖分析而得到的。

快速瞭解RF射頻晶片測試座!科普:時域與頻域

三個正弦波

將所有的正弦波進行正確的累加,就會產生如傅立葉變換所預示的那類形狀的訊號。當有時這一現象並不直觀,舉個例子可能有助於理解。

請再次想想上面那個例子中小孩的重物-彈簧玩具,操場上的蹺蹺板,以及位於外部海洋上的船。設想這艘船以頻率為w和幅度為A的正弦波形式在海面上起起落落,我們同時再假設蹺蹺板也以頻率為3w和幅度為A/3的正弦波形式在振盪,並且小孩以頻率為5w和幅度為A/5的正弦波形式在搖動玩具。‘三張單獨的正弦波波形圖’已經顯示出,如果我們將三個不同的正弦波運動進行分別觀察的話,每個正弦波運動將會體現出的形式。

快速瞭解RF射頻晶片測試座!科普:時域與頻域

波的疊加

現在假設小孩坐在蹺蹺板上,而蹺蹺板又依次固定在輪船的甲板上。如果這三者單獨的正弦波運動又恰巧排列正確的話,那麼,玩具所表現出的總體運動就大約是一個方波-如圖4:三者合成的正弦波顯示的那樣。

以上並非一個非常確切的實際例子,但是卻明白無誤的說明:基本頻率正弦波、振幅為三分之一的三倍頻率諧波、以及振幅為五分之一的五倍頻率諧波,它們波形的相加總和大約等於頻率為w、振幅為A的方波。甚至如果再加上振幅為七分之一的七倍頻率諧波、以及振幅為九分之一的九倍頻率諧波時,總波形會更像方波。其實,傅立葉定理早已說明,當不同頻率的正弦波以無窮級數的方式無限累加時,那麼由此產生的總疊加訊號就是一個嚴格意義上的、幅度為A的方波。傅立葉定理也可以用來將非週期訊號分解成正弦波訊號的無限疊加。

透過求解微分方程分析時域效能是十分有用的,但對於比較複雜的系統這種辦法就比較麻煩。因為微分方程的求解計算工作量將隨著微分方程階數的增加而增大。另外,當方程已經求解而系統的響應不能滿足技術要求時,也不容易確定應該如何調整系統來獲得預期結果。從工程角度來看,希望找出一種方法,使之不必求解微分方程就可以預示出系統的效能。同時,又能指出如何調整系統性能技術指標。頻域分析法具有上述特點,是研究控制系統的一種經典方法,是在頻域內應用圖解分析法評價系統性能的一種工程方法。該方法是以輸入訊號的頻率為變數,對系統的效能在頻率域內進行研究的一種方法。頻率特性可以由微分方程或傳遞函式求得,還可以用實驗方法測定。頻域分析法不必直接求解系統的微分方程,而是間接地揭示系統的時域效能,它能方便的顯示出系統引數對系統性能的影響,並可以進一步指明如何設計校正。這種分析法有利於系統設計,能夠估計到影響系統性能的頻率範圍。特別地,當系統中存在難以用數學模型描述的某些元部件時,可用實驗方法求出系統的頻率特性,從而對系統和元件進行準確而有效的分析。

訊號頻域分析

是採用傅立葉變換將時域訊號x(t)變換為頻域訊號X(f),從而幫助人們從另一個角度來了解訊號的特徵。訊號頻譜X(f)代表了訊號在不同頻率分量成分的大小,能夠提供比時域訊號波形更直觀,豐富的資訊。

1822年,法國數學家傅立葉(J。Fourier,1768-1830)在研究熱傳導理論時發表了“熱的分析理論”,提出並證明了將週期函式展開為正弦級數的原理,奠定了傅立葉級數的理論基礎。

泊松(Poisson)、高斯(Guass)等人把這一成果應用到電學中去,得到廣泛應用。

19世紀末,人們製造出用於工程實際的電容器。

進入20世紀以後,諧振電路、濾波器、正弦振盪器等一系列具體問題的解決為正弦函式與傅立葉分析的進一步應用開闢了廣闊的前景。

在通訊與控制系統的理論研究和工程實際應用中,傅立葉變換法具有很多的優點。

“FFT”快速傅立葉變換為傅立葉分析法賦予了新的生命力。

頻域分析是以輸入訊號的頻率為變數,在頻率域,研究系統的結構引數與效能的關係, 揭示了訊號內在的頻率特性以及訊號時間特性與其頻率特性之間的密切關係,從而匯出了訊號的頻譜、頻寬以及濾波、調製和頻分複用等重要概念。

頻域分析的優點

頻域分析具有明顯的優點:無需求解微分方程,圖解(頻率特性圖)法,間接揭示系統性能並指明改進效能的方向和易於實驗分析。可推廣應用於某些非線性系統(如含有延遲環節的系統)以及可方便設計出能有效抑制噪聲的系統。

頻域分析法包括分析系統的

1、頻率響應,它指系統對正弦輸入訊號的穩態響應。

2、頻率特性,它指系統在不同頻率的正弦訊號輸入時,其穩態輸出隨頻率而變化(ω由0變到∞)的特性。

3、幅頻特性與相頻特性一起構成系統的頻率特性。

4、幅頻特性,它指的是當ω由0到∞變化時,|G(jω)|的變化特性,記為A(ω)。

5、相頻特性, 它指的是當ω由0到∞變化時,∠G(jω)的變化特性稱為相頻特性,記為ϕ(ω)。

Tags:訊號頻率正弦波時域RF